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Motivation

* Availability of vast amounts of data:
— Hundreds of billions of text documents
— Billions of images/videos with descriptive annotations
— Tens of trillions of log records capturing human activity

* Machine Learning + Big Data transforming fiction into
reality:
— Self-driven automobiles
— Automated image understanding

— And most recently, deep learning to simulate a human
brain



Big Data Challenges
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Data Analytics, Data Mining, and Machine Learning

 Data: “The apple of my eye is hooked on Apple’s smart
phone and loves apple and yogurt.”

 Database Query: how many times does apple appear
in the data?

 Data Mining Query: what are the most frequent items
that appear together in the data?

* Machine Learning: how many time does the
fruit:<apple> appear in the data?
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BIG DATA MANAGEMENT (UCSB)
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Paradigm Shift in Computing
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Cloud Computing: Why?

* Experience with very large datacenters
— Unprecedented economies of scale
— Transfer of risk

 Technology factors
— Pervasive broadband Internet
— Maturity in Virtualization Technology

* Business factors
— Minimal capital expenditure
— Pay-as-you-go billing model



Economics of Cloud Computing

e Pay by use instead of provisioning for peak
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Scaling in the Cloud

Client Site Client Site Client Site

HAProxy (Load Balancer Elastic IP

Apache Apache Apache Apache Apache

+ App + App + App + App + App
Server Server Server Server Server

Database becomes the
Scalability Bottleneck
Cannot leverage elasticity
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Scaling in the Cloud
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Elastic IP
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Scaling in the Cloud

Client Site Client Site Client Site

HAProxy (Load Balancer Elastic IP

Apache Apache Apache Apache

+ App + App + App + App
Server Server Server Server

Scalable and Elastic
But limited consistency and
operational flexibility
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Two approaches to scalability

e Scale-up
— Classical enterprise setting

(RDBMS) =

— Flexible ACID transactions

(“

— Transactions in a single node

* Scale-out
— Cloud friendly (Key value stores)

— Execution at a single server
* Limited functionality & guarantees

— No multi-row or multi-step
transactions
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Key-value Stores: Design Principles

Separate System and Application State

Limit Application interactions to a single
node

Decouple Ownership from Data Storage

Limited distributed synchronization is
practical



Scalable Data Managementin the Cloud

T
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RDBMS Key Value Stores
Fission :
Fusion
ElasTraS [HotCloud G-Store [SoCC‘10]
’09, TODS’13] MegaStore [CIDR ‘11]
Cloud SQL Server [ICDE "11] ecStore [VLDB ‘10]

RelationalCloud [CIDR ‘11]
Google F1 (SIGMOD’12, VLDB’13)
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Data Fission

* Basic building-block:

— Data Partitioning (Table level =» Distributed

Transactions)

* Three Example Systems

L7533

— ElasTraS (UCSB) o ERh
ST

— SQL Azure (MSR) &

— Relational Cloud (MIT)
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Schema Level Partitioning

* Pre-defined

partitioning scheme

— e.g.: Tree schema

— ElasTras,
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 Workload driven
partitioning scheme
— e.g.: Schism in
RelationalCloud
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ElasTraS Architecture
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Data Fusion

e Key value: Atomicity guarantee on single keys

 Combining the individual key-value pairs into
larger granules of transactional access

 Megastore: Statically defined
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G-Store: Transactions on Groups
Without dist-i-:+~o +omnomm o n l

E Group
Ownership

. E of keys at a
/ single node

@)
H o
o) @]

o0 One key selected as the leader

o Followers transfer ownership of
keys to leader
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Elasticity

* A database system built over a pay-per-use
infrastructure

— Infrastructure as a Service for instance

* Scale up and down system size on demand
— Utilize peaks and troughs in load

* Minimize operating cost while ensuring good
performance
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Elasticity in the Database Layer

DBMS
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Elasticity in the Database Layer

DBMS
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Elasticity in the Database Layer

DBMS
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Live Database Migration

* No prior work on Database migration

e State-of-the-art — use VM migration
— [Clark et al., NSDI 2005], [Liu et al., HPDC 2009]

* Requires executing DB-in-VM
— High performance overhead

— Poor performance and consolidation ratio [Curino
et al., CIDR 2011]



Shared Disk Architecture: Albatross

DBMS
Node

Persistent
Image
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* No failed request vs 100s of failed
requests (naive solution)

* Much shorter unavailability window
(naive solution)

 15-30% increase in latency vs

200-400% latency increase (naive

solution) Transaction

Tenant/DB Partition Tenant/DB Partition

Source % Destination&\/
- ~—l \
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Shared- Nothlng Archltecture Zephyr

e 50-100 failed requests vs 1000s of

failed requests (naive solution) %
/ * No unavailability window vs 5-8

Freeze IndexS  seconds (naive solution)
e 20% increase in latency vs 15% 110 1]
INININ latency increase (naive solution)
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BIG DATA ANALYTICS (QCRI):
LEARNING
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Application

L
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Learning: Model Fitting

Model Q

Dataset = J

Observations
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Machine Learning in One Slide

(xz;‘li: ™ - (x;, y;=+1) y=W.X+b
+ - + _
— o y=-1
N +_ il _xy=-1)
-j: —
+ find a model that
— best separates:
+and -
Big Data Setting l

n=1012 n
w' =min E U(x,y,w)+I'(w) A W= minzf(xi,yi,w) +I'(w)
i=1 '\/' - $
dimension 10° Loss function T

Regularization
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Linear Regression Example

 For a given training data with features x;, and x, we
model the dependent variable y as a hypothesis

function:
hy(x) = 0,+ 0,x,+ O,x,

« With a training data of size m, minimize a cost function:

L PRI
J0) = 5 ) (ho(x) = y)2
i=1

* lteratively, compute the gradient and update 6;

60.«<-0 I (8)
— 0. — a—
J J aaejl
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Gradient Descent: Sequential Computation

Repeat until convergence

{
read (6,, 6,, ..., 6,.);

Compute gradient;

Write (90,; 91 ,, S em,);
)



Scaling Machine Learning Algorithms

* Leverage data and feature partitioning to parallelize the
computations.

Feature Partitioning

: Feature
QD) = Genitalized Parallelization
—
Q
O
Q
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o
et
o
3.
0% == Data Data and Feature
Parallelization Parallelization




Parallel Version

1 ] | J
1 I

m, m, R ¥
Worker i (at iteration a): Worker j (at iteration a):
read synchronization read synchronization
read (17, My, ..., TTy); read (1M, 1, ..., My);
Compute gradient projection: Compute gradient projection;
write synchronization write synchronization

write ( 17;"); write ( 17;");



Parallel Version

i
s

Worker i (at iteration a):

Vi k wkink]la—1] < rim/][a]
read (17, My, ..., My);
Compute gradient projection;

Vi k rkfnjla] < wini|a]

write ( 17" );

Worker j (at iteration a):

Vi k wkink]la—1] < rin/][a]
read (17, 1M, ..., TTy);
Compute gradient projection;

Vi k rkfnjlla] < win|a]

write ( 11,7 );



Straggler or Last Reducer Problem

W2

W1

0 1 2 3 4
Master Clock

(a) The Straggler Problem



Scaling ML Algorithms

. Current Approaches [e.g., Parameter Server]:
Allow synchronization V|olat|ons albeit bounded
- Not equivalent to semantics of sequential executions
- Use function-centric arguments to demonstrate convergence
- Higher tolerance to imprecision (nature of ML)

* Process-based synchronization =» data-centric approaches:

- Model read and write of parameter variables as database
actions

- 2-phase locking during each iteration for fine-grained
concurrency

« Unfortunately, does not work:
- Need a new framework for data-centric synchronization!



Barrier Relaxation

W2

W1

Uy’
T,
1 2 3 4
Master Clock

(b) Barrier Relaxation



Data-centric View of Synchronization

* Read Constraint: Worker i can read ; in iteration a only
after worker j has completed writes of iteration a — 1.

Vij wilylla—1] < rd{mn/][a]

» Write Constraint: Worker j can write ; in iteration a only
after all the workers have read it.

Vi rifvjfla] < wjly]|a]



Training Data Size = 5000, Convergence Tolerance = 0.00001
Number of features = 960
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Data Partitioning

Row-Oriented

Feature
Partitioning

Fully Distributed

— ‘

pem— —
AZ
— —

Column-Oriented

—

Mixed
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Work-in-progress

1.
2.

Characterization of sequentially consistent executions.
Data-centric constraints =» sequentially consistent

Process-centric synchronization =» sequentially
consistent

Qualitative analysis of different classes of executions
Develop protocols that enforce data-centric constraints

Experimental evaluation



BIG DATA PRAGMATICS: DATA-CENTERS,
DATA PIPELINES AND MULTI-HOMING (GOOGLE)
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The Scalability Challenge: DropBox Case Study

Example #1: High-level architecture

mid-2007, the
beginning

m 2 employees

(1 backend)
~0 users

Example #1: High-level architecture

7

late 2007,
second try

3 employees
(1 backend)
~0 users

STANFO

Example #1: High-level architecture

early 2008

4 employees
(2 backend)
50k users

Example #1: High-level architecture

i
\

|
/r.'.::

/

early 2012

~100 employees
(7 backend)
>50M users




Datacenter is a new substrate: Why?

* Dis-aggregation of resources:
— Processing elements
— Storage elements

=>» The classical model of CPU + Disk is not tenable

2015 KTH Summer School: Cloud
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Resource Dis-aggregation?

* At odds with the cloud computing model (scalability and
elasﬁcity) Scaling-out &

=

e At odds with the utility model (fault tolerance)

Failures

B
’;@
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Architecting DBMSs in Datacenters

DBMS
Controller
[H DBMS Server
- \\
[ Distributed [ )\
;l‘
N [{ DB Worker Iahared v u DB Worker Y,
- Pool emory Pool /
— .

/

s
Distributed Storage Layer
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Notes on the Architecture

* Network and I/O latency mitigation:
— Batching or pipelining of data accesses
— Leverage parallelism at the distributed storage layer

 Query execution plans:

— An additional degree-of-freedom (underlying resource
platform is dynamic, e.g., 10 vs 100 machines)

* Data replication:
— Block level vs DBMS level?



HIGH-VOLUME TRANSACTION
PROCESSING
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Internet Backend Architecture

(Current) E |

Queries, Ad Clicks Accounts

Reporting
Ads Campaigns Billing
Budget Analysis
User
Interaction DBMS

O PP
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Internet Back-end Architecture

. I(Postulated)
Internet Users Advertisers + Publishers

Queries, Ad Clicks Accounts

Reporting
Ads Campaigns; | Bijjling
Budget Analysis

Ads Serving
User
Interactions
’4’;,._,'“ / - : :
—= p.Tra nsactio Per5|sten’g Storage:
= 1. Advertiser Data
7 , 2. Publisher Data

3. Ad Statistical Data

. ) — @)
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Cross-datacenter Replication

5 Cloud |
. application

|
)
- =

S Distributed Storage La’?er )
v

II»[ Cross-datacenter Replication (Spanner)
¢
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Cross-Datacenter Replication?

* Current state:
— Google’s technologies: MegaStore, Spanner, and PaxosDB
— Typically, passive replication of ALL data

e Sustainable approach:
— Critical data should be based on synchronous techniques

— Most data, especially application data, should be updated using
active replication (i.e., by executing operations redundantly at
each datacenter)

e Why?
— Fault-deterrence (by executing actions redundantly)

— Operation latency not dependent on a single master (rather
fastest quorum)

=» Cross-datacenter latencies: 100s of milliseconds

2015 KTH Summer School: Cloud
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Cross-datacenter Replication:
Distributed Logs
Cloud

application ] ‘

Logs from
other
Datacenters J

Distributed Log Service
" J
- N
S Distributed Log Storage p

C

Replicated to other
Datacenters



Big Data Pragmas

Debunk Single Machine =» Datacenter is a computer
Computation is already disaggregated

* Disaggregation of storage resources:
— Disk storage: local disk assumption is seriously flawed
— Flash storage: will be integral in the storage hierarchy

— Main memory: likely to meet the same fate (local vs
remote)

* Networking:

— Intra-datacenter latencies < 0.5ms (big opportunity)

— Inter-datacenter latency still remains a challenge (need
innovation)

2015 KTH Summer School: Cloud
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Concluding Remarks

* Cloud Computing Challenge:
— Scalability, Reliability, and Elasticity
— Re-architecting DBMS technology
* Big Data Analysis and Learning:
— Scaling Iterative Computation over Big Data
— DBMS-like platform for Machine Learning
* Big Data Pragmatics:
— Complex Data Processing Pipelines
— Multi-homing and Geo-replication

2015 KTH Summer School: Cloud
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