Big Data, Deep Learning and Other Allegories: Scalability and Fault-tolerance of Parallel and Distributed Infrastructures

Divy Agrawal

Professor of Computer Science
UC Santa Barbara

Visiting Scientist, Ads Data Infrastructure Google Inc.

Research Director, Data Analytics

Qatar Computing Research Institute

With: Sanjay Chawla et al. (QCRI), Amr El Abbadi et al. (UCSB), & Shiv Venkataraman et al. (Google)

Motivation

- Availability of vast amounts of data:
 - Hundreds of billions of text documents
 - Billions of images/videos with descriptive annotations
 - Tens of trillions of log records capturing human activity

- Machine Learning + Big Data transforming fiction into reality:
 - Self-driven automobiles
 - Automated image understanding
 - And most recently, deep learning to simulate a human brain

Big Data Challenges

	X ₁	X ₂	•••	X _d
X ₁	X ₁₁	X ₁₂		X _{1d}
X ₂	x ₂₁	X ₂₂		x _{2d}
· ·	•			
x _n	X _{n1}	X _{n2}		X _{nd}

Statistical Hardness

$$f:\{C\}\to 2^{\{C\}}$$

Computational Complexity

$$T: S \times S \to_{dup} \{0,1\}$$

Data Analytics, Data Mining, and Machine Learning

- Data: "The apple of my eye is hooked on Apple's smart phone and loves apple and yogurt."
- Database Query: how many times does apple appear in the data?
- Data Mining Query: what are the most frequent items that appear together in the data?
- Machine Learning: how many time does the fruit:<apple> appear in the data?

	X ₁	X ₂	 X _d
x ₁	X ₁₁	X ₁₂	 X _{1d}
x ₂	x ₂₁	x ₂₂	 x _{2d}
:			
X _n	X _{n1}	x _{n2}	 X _{nd}

BIG DATA MANAGEMENT (UCSB)

Paradigm Shift in Computing

Azure Services Platform

Cloud Computing: Why?

- Experience with very large datacenters
 - Unprecedented economies of scale
 - Transfer of risk
- Technology factors
 - Pervasive broadband Internet
 - Maturity in Virtualization Technology
- Business factors
 - Minimal capital expenditure
 - Pay-as-you-go billing model

Economics of Cloud Computing

Pay by use instead of provisioning for peak

Scaling in the Cloud

Scaling in the Cloud

Scaling in the Cloud

Two approaches to scalability

Scale-up

- Classical enterprise setting (RDBMS)
- Flexible ACID transactions
- Transactions in a single node

- Cloud friendly (Key value stores)
- Execution at a single server
 - Limited functionality & guarantees
- No multi-row or multi-step transactions

Key-value Stores: Design Principles

- Separate System and Application State
- Limit Application interactions to a single node

- Decouple Ownership from Data Storage
- Limited distributed synchronization is practical

Scalable Data Managementin the Cloud

ElasTraS [HotCloud '09,TODS'13]

Cloud SQL Server [ICDE '11]
RelationalCloud [CIDR '11]
Google F1 (SIGMOD'12, VLDB'13)

G-Store [SoCC '10]
MegaStore [CIDR '11]
ecStore [VLDB '10]

Data Fission

- Basic building-block:
 - Data Partitioning (Table level Distributed
 Transactions)

- Three Example Systems
 - ElasTraS (UCSB)
 - SQL Azure (MSR)
 - Relational Cloud (MIT)

Schema Level Partitioning

- Pre-defined partitioning scheme
 - e.g.: Tree schema
 - e.g.. Thee schein

- Workload driven partitioning scheme
 - e.g.: Schism in RelationalCloud

ElasTraS Architecture

Data Fusion

- Key value: Atomicity guarantee on single keys
- Combining the individual key-value pairs into larger granules of transactional access
- Megastore: Statically defined

Elasticity

- A database system built over a pay-per-use infrastructure
 - Infrastructure as a Service for instance

- Scale up and down system size on demand
 - Utilize peaks and troughs in load
- Minimize operating cost while ensuring good performance

Elasticity in the Database Layer

DBMS

Elasticity in the Database Layer

DBMS

Elasticity in the Database Layer

DBMS

Live Database Migration

No prior work on Database migration

- State-of-the-art use VM migration
 - [Clark et al., NSDI 2005], [Liu et al., HPDC 2009]
- Requires executing DB-in-VM
 - High performance overhead
 - Poor performance and consolidation ratio [Curino et al., CIDR 2011]

Shared Disk Architecture: Albatross

Shared-Nothing Architecture: Zephyr

	X ₁	X ₂	 X _d
x ₁	X ₁₁	X ₁₂	 X _{1d}
x ₂	x ₂₁	x ₂₂	 x _{2d}
:			
x _n	x _{n1}	x _{n2}	 x _{nd}

BIG DATA ANALYTICS (QCRI): LEARNING

Learning: Model Fitting

Machine Learning in One Slide

Linear Regression Example

 For a given training data with features x₁, and x₂, we model the dependent variable y as a hypothesis function:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2$$

With a training data of size m, minimize a cost function:

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Iteratively, compute the gradient and update θ_i

$$\theta_j \leftarrow \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Gradient Descent: Sequential Computation

```
Repeat until convergence {
	read (\theta_0, \theta_1, ..., \theta_m);
	Compute gradient;
	write (\theta_0', \theta_1', ..., \theta_m');
}
```

Scaling Machine Learning Algorithms

 Leverage data and feature partitioning to parallelize the computations.

Parallel Version

Worker i (at iteration α):

Worker j (at iteration α):

read synchronization

read $(\pi_1, \pi_2, ..., \pi_d)$;

Compute gradient projection;

write synchronization

write (π_i) ;

read synchronization

read $(\pi_1, \pi_2, ..., \pi_d)$;

Compute gradient projection;

write synchronization

write (π_i) ;

Parallel Version

Worker i (at iteration α):

$$\forall i,j,k \ wk[\pi k][\alpha-1] < ri[\pi j][\alpha]$$

read
$$(\pi_1, \pi_2, ..., \pi_d)$$
;

Compute gradient projection;

$$\forall i,j,k \ rk[\pi j][\alpha] < wi[\pi i][\alpha]$$

write
$$(\pi_i)$$
;

Worker j (at iteration α):

$$\forall i,j,k \ wk[\pi k][\alpha-1] < ri[\pi j][\alpha]$$

read
$$(\pi_1, \pi_2, ..., \pi_d)$$
;

Compute gradient projection;

$$\forall i,j,k \ rk[\pi j][\alpha] < wi[\pi i][\alpha]$$

write
$$(\pi_i)$$
;

Straggler or Last Reducer Problem

(a) The Straggler Problem

Scaling ML Algorithms

- Current Approaches [e.g., Parameter Server]:
 - Allow synchronization violations albeit bounded
 - Not equivalent to semantics of sequential executions
 - Use function-centric arguments to demonstrate convergence
 - Higher tolerance to imprecision (nature of ML)
- Process-based synchronization → data-centric approaches:
 - Model read and write of parameter variables as database actions
 - 2-phase locking during each iteration for fine-grained concurrency
- Unfortunately, does not work:
 - Need a new framework for data-centric synchronization!

Barrier Relaxation

(b) Barrier Relaxation

Data-centric View of Synchronization

• Read Constraint: Worker i can read π_j in iteration α only after worker j has completed writes of iteration $\alpha - 1$.

$$\forall i,j \ wj[\pi j][\alpha-1] < ri[\pi j][\alpha]$$

• Write Constraint: Worker j can write π_j in iteration α only after all the workers have read it.

$$\forall i,j \ ri[\pi j][\alpha] < wj[\pi j][\alpha]$$

Training Data Size = 5000, Convergence Tolerance = 0.00001 Number of features = 960

Computing and Big Data

Work-in-progress

- 1. Characterization of sequentially consistent executions.
- 2. Data-centric constraints → sequentially consistent
- Process-centric synchronization → sequentially consistent
- 4. Qualitative analysis of different classes of executions
- 5. Develop protocols that enforce data-centric constraints
- 6. Experimental evaluation

BIG DATA PRAGMATICS: DATA-CENTERS, DATA PIPELINES AND MULTI-HOMING (GOOGLE)

The Scalability Challenge: DropBox Case Study

Datacenter is a new substrate: Why?

- Dis-aggregation (& virtualization) of resources:
 - Processing elements
 - Storage elements
- The classical model of CPU + Disk is not tenable

Resource Dis-aggregation?

At odds with the cloud computing model (scalability and

At odds with the utility model (fault tolerance)

Architecting DBMSs in Datacenters **DBMS Controller DBMS Server Distributed Shared DB Worker DB Worker Memory Pool Pool Distributed Storage Layer**

8/7/15 2015 KTH Summer School: Cloud

Notes on the Architecture

- Network and I/O latency mitigation:
 - Batching or pipelining of data accesses
 - Leverage parallelism at the distributed storage layer
- Query execution plans:
 - An additional degree-of-freedom (underlying resource platform is dynamic, e.g., 10 vs 100 machines)
- Data replication:
 - Block level vs DBMS level?

HIGH-VOLUME TRANSACTION PROCESSING

Internet Backend Architecture
(Current)

Internet Back-end Architecture
(Postulated)

MULTI-HOMING (GEO-REPLICATION)

Cross-datacenter Replication Cloud application Cross-datacenter Replication (Spanner) **Distributed Storage Layer**

Cross-Datacenter Replication?

- Current state:
 - Google's technologies: MegaStore, Spanner, and PaxosDB
 - Typically, passive replication of ALL data
- Sustainable approach:
 - Critical data should be based on synchronous techniques
 - Most data, especially application data, should be updated using active replication (i.e., by executing operations redundantly at each datacenter)
- Why?
 - Fault-deterrence (by executing actions redundantly)
 - Operation latency not dependent on a single master (rather fastest quorum)
 - → Cross-datacenter latencies: 100s of milliseconds

Cross-datacenter Replication:

Computing and Big Data

Big Data Pragmas

- Debunk Single Machine
 Datacenter is a computer
- Computation is already disaggregated
- Disaggregation of storage resources:
 - Disk storage: local disk assumption is seriously flawed
 - Flash storage: will be integral in the storage hierarchy
 - Main memory: likely to meet the same fate (local vs remote)
- Networking:
 - Intra-datacenter latencies < 0.5ms (big opportunity)
 - Inter-datacenter latency still remains a challenge (need innovation)

Concluding Remarks

- Cloud Computing Challenge:
 - Scalability, Reliability, and Elasticity
 - Re-architecting DBMS technology
- Big Data Analysis and Learning:
 - Scaling Iterative Computation over Big Data
 - DBMS-like platform for Machine Learning
- Big Data Pragmatics:
 - Complex Data Processing Pipelines
 - Multi-homing and Geo-replication